2022 BC \#6
(no calculator)
(a)

Using the ratio test, we want to find all x such that
$\lim _{n \rightarrow \infty}\left|\frac{x^{2(n+1)+1}}{2(n+1)+1} \cdot \frac{2 n+1}{x^{2 n+1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{2 n+3}}{2 n+3} \cdot \frac{2 n+1}{x^{2 n+1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{2 n} x^{3}}{2 n+3} \cdot \frac{2 n+1}{x^{2 n} x^{1}}\right|=\lim _{n \rightarrow \infty}\left(\frac{2 n+1}{2 n+3}\right) \cdot\left|x^{2}\right|<1$
$\left|x^{2}\right|<1 \Rightarrow-1<x<1$ and the radius of convergence $=1$
Testing the endpoints:
When $x=-1: \sum_{n=0}^{\infty} \frac{(-1)^{n}(-1)^{2 n+1}}{2 n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{2 n+1} \quad$ When $x=1: \sum_{n=0}^{\infty} \frac{(-1)^{n}(1)^{2 n+1}}{2 n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}$
Both are alternating series whose terms decrease in absolute value to 0 so they both converge.
In other words they are alternating series, $\mathrm{a}_{n+1}<a_{n}$, and $\lim _{n \rightarrow \infty} \frac{1}{2 n+1}=0$
So the interval of convergence of f is $-1 \leq x \leq 1$.
(b)
$f\left(\frac{1}{2}\right) \approx \frac{1}{2}$ so we can say that this represents $P_{1}\left(\frac{1}{2}\right)$, the first degree
Taylor polynomial for the alternating series, $f(x)$ when $x=\frac{1}{2}$.
So, $\left|f(x)-\frac{1}{2}\right|=\left|f(x)-P_{1}\left(\frac{1}{2}\right)\right|$ is the error form for the alternating series.
Hence, the alternating series error bound is the first omitted term \Rightarrow
$\left|f(x)-\frac{1}{2}\right|=\left|f(x)-P_{1}\left(\frac{1}{2}\right)\right| \leq\left|\frac{-\left(\frac{1}{2}\right)^{3}}{3}\right|=\frac{1}{24}<\frac{1}{10}$
(c)
$f^{\prime}(x)=1-\frac{3 x^{2}}{3}+\frac{5 x^{4}}{5}-\frac{7 x^{6}}{7}+\cdots+\frac{(2 n+1)(-1)^{n} x^{2 n}}{2 n+1}+\cdots$
or $=1-x^{2}+x^{4}-x^{6}+\cdots+(-1)^{n} x^{2 n}+\cdots$
(d)
$f^{\prime}\left(\frac{1}{6}\right) \approx 1-\left(\frac{1}{6}\right)^{2}+\left(\frac{1}{6}\right)^{4}-\left(\frac{1}{6}\right)^{6}+\cdots=\frac{1}{1-\left(-\left(\frac{1}{6}\right)^{2}\right)}$ or $\frac{36}{37}$
$\left(\right.$ a geometric series where $a_{1}=1$ and $r=-\left(\frac{1}{6}\right)^{2}$ so the sum $\left.=\frac{a_{1}}{1-r}\right)$

