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2022 BC #6 

(no calculator) 
 
(a) 

		 

Using	the	ratio	test,	we	want	to	find	all	x 	such	that
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x2 <1		⇒ 		−1< x <1		and	the	radius	of	convergence	 =1
Testing	the	endpoints:
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Both	are	alternating	series	whose	terms	decrease	in	absolute	value	to	0	so	they	both	converge.

In	other	words	they	are	alternating	series,	an+1 <an , 	and	limn→∞

1
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So	the	interval	of	convergence	of	f 	is	 −1≤ x ≤1 .

  

   
(b) 
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≈ 12	so	we	can	say	that	this	represents	P1

1
2

⎛
⎝⎜

⎞
⎠⎟
, 	the	first	degree

Taylor	polynomial	for	the	alternating	series,	f (x)	when	x = 12.

So,	 f (x)− 12 = f (x)−P1
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	is	the	error	form	for	the	alternating	series.

Hence,	the	alternating	series	error	bound	is	the	first	omitted	term	⇒ 	
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(c) 

		 

f '(x)= 1− 3x
2

3 + 5x
4

5 − 7x
6

7 +!+ (2n+1)(−1)
n x2n

2n+1 +!

or						 =1− x2 + x4 − x6 +!+(−1)n x2n +!

  

 
(d) 
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			or	 3637 		

a	geometric	series	where	a1 =1	and		r = −
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