2022 AB/BC \#1 (calculator-active)

(a)
$A(t)=450 \sqrt{\sin (0.62 t)}$ is the rate at which vehicles arrive at the toll plaza
in vehicles per hour from 5 am until 10am. The number of vehicles that arrive
at the toll plaza from 6am $(t=1)$ until 10am $(t=5)$ is $\int_{1}^{5} A(t) d t$.
(b)

The average value of the rate at which the vehicles arrive at the toll plaza
from time $t=1$ to time $t=5$ is $\frac{1}{5-1} \int_{1}^{5} A(t) d t=375.5369662$ or 375.536 or $375.537 \frac{\text { vehicles }}{\text { hour }}$
(c)
$A^{\prime}(1)=148.9472908>0$
The rate at which the vehicles arrive at the toll plaza at 6am is increasing because $A^{\prime}(t)>0$ when $t=1$.
(d)

When $A(t) \geq 400, N(t)=\int_{a}^{t}(A(t)-400) d t$ for $a \leq t \leq 4$.
We want the absolute maximum value of $N(t)$ for $a \leq t \leq 4$.
This will occur when $t=a$, or when $t=4$, or when $N^{\prime}(t)=0$.
$N^{\prime}(t)=A(t)-400=0 \Rightarrow A(t)=400 \Rightarrow t=1.4693716=t_{1}$ and $t=3.5977133=t_{2}$
(we knew t_{1} was going to be a since we know the line started forming at $t=a$)
Comparing the values of N at the candidates:
$N(a)=\int_{a}^{a}(A(t)-400) d t=0$
$N\left(t_{1}\right)=\int_{a}^{t_{1}}(A(t)-400) d t=0$
$N\left(t_{2}\right)=\int_{a}^{t_{2}}(A(t)-400) d t=71.254$
$N(4)=\int_{a}^{4}(A(t)-400) d t=62.338$
So the greatest number of vehicles in line at the toll plaza in the time interval $a \leq t \leq 4$ is 71 and this occurs at time $t=3.5977133$.

