2022 AB \#2

(calculator-active)
(a)
$f(x)$ is the top curve and $g(x)$ is the bottom curve.
f and g intersect when $f(x)=g(x) \Rightarrow x=-2$ and $x=B=0.7819751$.
Area $=\int_{-2}^{B}(f(x)-g(x)) d x=3.6035$
(b)

The vertical distance between f and g is $h(x)=f(x)-g(x)$.
$h^{\prime}(-0.5)=f^{\prime}(-0.5)-g^{\prime}(-0.5)=-0.5999<0$.
h is decreasing at $x=-0.5$ because $h^{\prime}(x)<0$ at $x=-0.5$.
(c)

The area of the cross sections are squares. So, $h(x)=f(x)-g(x)$ is the side of the square and the area of a cross section is $(h(x))^{2}$.
\therefore the volume of the solid is $\int_{-2}^{B}(h(x))^{2} d x=5.340$
(d)

From part (c), the area of a cross section is $A(x)=(h(x))^{2}$.

$$
\begin{aligned}
& \frac{d x}{d t}=7 \text {. We need to find } \frac{d A}{d t} \text { when } x=-0.5 \text {. } \\
& \frac{d A}{d t}=2 \cdot h(x) \cdot h^{\prime}(x) \cdot \frac{d x}{d t} \quad \text { (using careful use of the chain rule!) } \\
& \left.\frac{d A}{d t}\right|_{x=-0.5}=2 \cdot h(-0.5) \cdot h^{\prime}(-0.5) \cdot 7 \\
& =2 \cdot\left(f(-0.5)-g(-0.5) \cdot\left(f^{\prime}(-0.5)-g^{\prime}(-0.5)\right) \cdot 7\right. \\
& =2 \cdot(f(-0.5)-g(-0.5) \cdot(0.5999) \cdot 7 \\
& =-9.2718 \text { or }-9.271 \text { or }-9.272
\end{aligned}
$$

