
 
2024 RELEASED FREE RESPONSE SOLUTIONS – MR. CALCULUS 

 
2024 BC #6 

(no calculator) 
 
(a) 

  

At x = 6,  (n+1)6n

n26n
n=1

∞

∑ = n+1
n2

n=1

∞

∑
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  for n ≥1.      So the series also diverges  by the Direct Comparison Test.

OR:  Using the Limit Comparison Test:
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So both series diverge by the Limit Comparison Test.

   

(b) 
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∑   is an alternating series that converges

since the radius of convergence is 6 and − 6 < −3< 6,  then f (−3) must converge.

f (−3)− S3 = Error < a4
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(c) 

   

f (x) = (n+1)xn
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Since the radius of convergence of a power series f '  is the same as that of a power series f ,

then the radius of convergence of  f '   is  6 .
OR:  Using the ratio test to find the radius of convergence of  f ' :

lim
n→∞

(n+ 2)xn

(n+1)6n+1 i
n6n

(n+1)xn−1 <1

lim
n→∞

(n+ 2)xn
(n+1)26

<1 ⇒  lim
n→∞

(n+ 2)n
(n+1)2

⎛
⎝⎜

⎞
⎠⎟

x
6
<1 ⇒  x

6
<1  ⇒  x < 6  ⇒  − 6 < x < 6

The radius of convergence of f '  is 6 .

 

(d) 

   

g(x) = (n+1)x2n
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<1  ⇒   x2 < 3   ⇒    x < 3     So the radius of convergence of g  is  3

 

 


