2024 BC \#6
(no calculator)
(a)

At $x=6, \sum_{n=1}^{\infty} \frac{(n+1) 6^{n}}{n^{2} 6^{n}}=\sum_{n=1}^{\infty} \frac{n+1}{n^{2}}$
Comparing the series to harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ which diverges (p-series, $p=1$)
and $\frac{n+1}{n^{2}}>\frac{1}{n}$ for $n \geq 1$. So the series also diverges by the Direct Comparison Test.
OR: Using the Limit Comparison Test:
Since both series are positive, $\lim _{x \rightarrow \infty}\left(\frac{\frac{n+1}{n^{2}}}{\frac{1}{n}}\right)=\lim _{x \rightarrow \infty}\left(\frac{n+1}{n}\right)=1>0$ and finite
So both series diverge by the Limit Comparison Test.
(b)
$f(-3)=\sum_{n=1}^{\infty} \frac{n+1}{n^{2}}\left(-\frac{1}{2}\right)^{n}$ is an alternating series that converges
since the radius of convergence is 6 and $-6<-3<6$, then $f(-3)$ must converge.
$\left|f(-3)-S_{3}\right|=$ Error $<\left|a_{4}\right|$
$\left|a_{4}\right|=\left|\frac{4+1}{4^{2}}\left(-\frac{1}{2}\right)^{4}\right|=\frac{5}{256}<\frac{5}{250}=\frac{1}{50}$
(c)
$f(x)=\sum_{n=1}^{\infty} \frac{(n+1) x^{n}}{n^{2} 6^{n}}=\sum_{n=1}^{\infty} \frac{(n+1)}{n^{2} 6^{n}} x^{n} \quad \Rightarrow \quad f^{\prime}(x)=\sum_{n=1}^{\infty}\left(\frac{(n+1)}{n^{2} 6^{n}}\right) n x^{n-1}=\sum_{n=1}^{\infty} \frac{(n+1) x^{n-1}}{n 6^{n}}$
Since the radius of convergence of a power series f^{\prime} is the same as that of a power series f,
then the radius of convergence of f^{\prime} is 6 .
OR: Using the ratio test to find the radius of convergence of f^{\prime} :
$\lim _{n \rightarrow \infty}\left|\frac{(n+2) x^{n}}{(n+1) 6^{n+1}} \cdot \frac{n 6^{n}}{(n+1) x^{n-1}}\right|<1$
$\lim _{n \rightarrow \infty}\left|\frac{(n+2) x n}{(n+1)^{2} 6}\right|<1 \Rightarrow \lim _{n \rightarrow \infty}\left(\frac{(n+2) n}{(n+1)^{2}}\right)\left|\frac{x}{6}\right|<1 \Rightarrow\left|\frac{x}{6}\right|<1 \Rightarrow|x|<6 \Rightarrow-6<x<6$
The radius of convergence of f^{\prime} is 6 .
(d)
$g(x)=\sum_{n=1}^{\infty} \frac{(n+1) x^{2 n}}{n^{2} 3^{n}}$
$\lim _{n \rightarrow \infty}\left|\frac{(n+2) x^{2 n+2}}{(n+1)^{2} 3^{n+1}} \cdot \frac{n^{2} 3^{n}}{(n+1) x^{2 n}}\right|<1$
$\lim _{n \rightarrow \infty}\left(\frac{(n+2) n^{2}}{(n+1)^{3}}\right)\left|\frac{x^{2}}{3}\right|<1$
$\left|\frac{x^{2}}{3}\right|<1 \Rightarrow\left|x^{2}\right|<3 \Rightarrow|x|<\sqrt{3} \quad$ So the radius of convergence of g is $\sqrt{3}$

