2024 RELEASED FREE RESPONSE SOLUTIONS — MR. CALCULUS

2024 BC #6
(no calculator)
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Comparing the series to harmonic series 2— which diverges (p-series, p =1)
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and = > . forn=1.  So the series also by the Direct Comparison Test.
OR: Using the Limit Comparison Test:
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Since both series are positive, lim I =lim| — [=1>0 and finite
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So both series diverge by the Limit Comparison Test.
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since the radius of convergence is 6 and —6 < -3 <6, then f(—3) must converge.
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Since the radius of convergence of a power series ' is the same as that of a power series f,
then the radius of convergence of "' is E[
OR: Using the ratio test to find the radius of convergence of f"':
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The radius of convergence of /' is E[
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