2024 BC \#2
(calculator active)
(a)
speed of the particle, $s(t)=\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}}$
speed of the particle at time $t=2, s(2)=\sqrt{\left(x^{\prime}(2)\right)^{2}+\left(y^{\prime}(2)\right)^{2}}=12.3048 \frac{\mathrm{~cm}}{\mathrm{sec}}$ or 12.304 or 12.305
(b)
total distance $=\int_{0}^{2} s(t) d t=15.9017 \mathrm{~cm}$ or 15.901 or 15.902
(c)
position of the particle $=y(2)+\int_{2}^{t} y^{\prime}(x) d x$ position of the particle at $t=0$ is $y(0)=y(2)+\int_{2}^{0} y^{\prime}(x) d x=-1.1736 \mathrm{~cm}$ or -1.173 or -1.174
(d)

Since on $2 \leq t \leq 8$ the particle is in the first quadrant, then $y(t)>0$ there.
So the particle is moving towards the x-axis and $y^{\prime}(t)<0$.
Graphing $y^{\prime}(t)$ from $2 \leq t \leq 8, y(t)>0$ and $y^{\prime}(t)<0$ when $5.221833<t<8$

