2024 AB/BC \#4
 (no calculator)

(a)
$g(-6)=\int_{0}^{-6} f(t) d t=-\int_{-6}^{0} f(t) d t=-12$
$g(4)=\int_{0}^{4} f(t) d t=\frac{1}{2}(4)(2)$ or 4
$g(6)=\int_{0}^{6} f(t) d t=4-\frac{1}{2}(2)(1)$ or 3
(b)
g will have a critical point when $g^{\prime}(x)=0$ or undefined.
$g^{\prime}(x)=f(x)=0$ when $x=4$.
(c)
$h(6)=\int_{-6}^{6} f^{\prime}(t) d t=f(6)-f(-6)=-1-0.5=-1.5$
$h^{\prime}(x)=f^{\prime}(x)$
$h^{\prime}(6)=f^{\prime}(6)=\frac{-1-2}{6-0}$ or $-\frac{1}{2}$
Note: This is the slope of the linear portion of the curve from $x=0$ to $x=7$.
$h^{\prime \prime}(x)=f^{\prime \prime}(x)$
$h^{\prime \prime}(6)=f^{\prime \prime}(6)=0$
Since curve is linear from $x=0$ to $x=7$ it's slope, $f^{\prime}(x)$, is constant so $f^{\prime \prime}(x)=0$ there.

