2024 AB/BC #4 (no calculator)

(a)

$$g(-6) = \int_{0}^{-6} f(t) dt = -\int_{-6}^{0} f(t) dt = [-12]$$

$$g(4) = \int_{0}^{4} f(t) dt = \frac{1}{2}(4)(2) \text{ or } 4$$

$$g(6) = \int_{0}^{6} f(t) dt = \frac{4 - \frac{1}{2}(2)(1)}{4 - \frac{1}{2}(2)(1)} \text{ or } 3$$
(b)
g will have a critical point when $g'(x) = 0$ or undefined.
 $g'(x) = f(x) = 0$ when $x = 4$.
(c)
 $h(6) = \int_{-6}^{6} f'(t) dt = f(6) - f(-6) = -1 - 0.5 = [-1.5]$
 $h'(x) = f'(x)$
 $h'(6) = f'(6) = [\frac{-1-2}{6-0}] \text{ or } -\frac{1}{2}$
Note: This is the slope of the linear portion of the curve from $x = 0$ to $x = 7$.
 $h''(x) = f''(x)$
 $h''(6) = f''(6) = [0]$
Since curve is linear from $x = 0$ to $x = 7$ it's slope, $f'(x)$, is constant so $f''(x) = 0$ there.