2024 AB/BC \#1 (calculator-active)

(a)

Using the average rate of chage of C over the interval $3 \leq \mathrm{t} \leq 7$,
$C^{\prime}(5) \approx \frac{C(7)-C(3)}{7-3}=\frac{69-85}{7-3} \frac{\text { degrees Celsius }}{\text { minute }}$ or $-4 \frac{C^{\circ}}{\min }$
(b)

Using a left Riemann sum, $\int_{0}^{12} C(t) d t \approx(3-0) C(0)+(7-3) C(3)+(12-7) C(7)$

$$
=3(100)+4(85)+5(69) \text { or } 985
$$

$\frac{1}{12} \int_{0}^{12} C(t) d t$ represents the average temperature of the coffee in the cup in degrees Celsius from time $t=0$ minutes to time $t=12$ minutes
(c)
$\int_{12}^{20} C^{\prime}(t) d t=C(20)-C(12)$ or
$C(20)=C(12)+\int_{12}^{20} C^{\prime}(t) d t=55+\int_{12}^{20} C^{\prime}(t) d t=40.32918806 C^{\circ}$ or $40.329 C^{\circ}$
(d)

We'll need the sign of $C^{\prime \prime}$ in order to determine whether the temperature of the coffee is changing at a decreasing rate or at an increasing rate.
For $12<t<20,0.2455 e^{0.01 t}(100-t)>0$ and $t^{2}>0$. Hence $C^{\prime \prime}>0$.
Therfore, on the given interval, the temperature of the coffee is changing at a increasing rate.

