2024 AB #6 (no calculator)

(a)
$f(x)$ is the "top" curve, $g(x)$ is the "bottom" curve on $0 \le x \le 5$
The area of region R = $\int_0^2 (f(x) - g(x)) dx$
(b)
The volume of the solid with a given cross section is the integral of the area of a cross section
on the given interval.
The area of the rectangular cross section $A(x) =$ (base of the rectangle)(height of the rectangle)
The base of the rectangle = $g(x) = x^2 - 2x$
The height of the rectangle is $\frac{1}{2}$ (base) $=\frac{1}{2}g(x) = \frac{1}{2}(x^2 - 2x) = \frac{1}{2}x^2 - x$
So, $A(x) = (x^2 - 2x)(\frac{1}{2}x^2 - x) = \frac{1}{2}x^4 - x^3 - x^3 + 2x^2 = \frac{1}{2}x^4 - 2x^3 + 2x^2$
Volume of the solid = $\int_{2}^{5} A(x) dx = \left(\frac{1}{10}x^{5} - \frac{1}{2}x^{4} + \frac{2}{3}x^{3}\right)_{2}^{5}$
$= \left(\frac{1}{10}(5)^5 - \frac{1}{2}(5)^4 + \frac{2}{3}(5)^3\right) - \left(\frac{1}{10}(2)^5 - \frac{1}{2}(2)^4 + \frac{2}{3}(2)^3\right)$
or $\frac{414}{5}$
(c) When region S is rotated about the line $y = 20$ from $0 \le x \le 5$, the cross sections are washers.
The area of the cross section $A(x) = \pi (\text{outer radius } R)^2 - \pi (\text{inner radius } r)^2$
R = 20 - 0 = 20 $r = 20 - g(r)$

 $R = 20 - 0 = 20 , \quad r = 20 - g(x)$ So, $A(x) = \pi \left(20^2 - \left(20 - g(x) \right)^2 \right)$ Volume of the solid $= \pi \int_2^5 A(x) dx$