2024 AB \#6

(no calculator)
(a)
$f(x)$ is the "top" curve, $g(x)$ is the "bottom" curve on $0 \leq \mathrm{x} \leq 5$
The area of region $\mathrm{R}=\int_{0}^{2}(f(x)-g(x)) d x$
(b)

The volume of the solid with a given cross section is the integral of the area of a cross section on the given interval.
The area of the rectangular cross section $A(x)=$ (base of the rectangle)(height of the rectangle)
The base of the rectangle $=g(x)=x^{2}-2 x$
The height of the rectangle is $\frac{1}{2}$ (base) $=\frac{1}{2} g(x)=\frac{1}{2}\left(x^{2}-2 x\right)=\frac{1}{2} x^{2}-x$
So, $A(x)=\left(x^{2}-2 x\right)\left(\frac{1}{2} x^{2}-x\right)=\frac{1}{2} x^{4}-x^{3}-x^{3}+2 x^{2}=\frac{1}{2} x^{4}-2 x^{3}+2 x^{2}$
Volume of the solid $=\int_{2}^{5} A(x) d x=\left.\left(\frac{1}{10} x^{5}-\frac{1}{2} x^{4}+\frac{2}{3} x^{3}\right)\right|_{2} ^{5}$

$$
=\left(\frac{1}{10}(5)^{5}-\frac{1}{2}(5)^{4}+\frac{2}{3}(5)^{3}\right)-\left(\frac{1}{10}(2)^{5}-\frac{1}{2}(2)^{4}+\frac{2}{3}(2)^{3}\right)
$$

$$
\text { or } \frac{414}{5}
$$

(c)

When region S is rotated about the line $y=20$ from $0 \leq x \leq 5$, the cross sections are washers.
The area of the cross section $A(x)=\pi(\text { outer radius } R)^{2}-\pi(\text { inner radius } r)^{2}$
$R=20-0=20, r=20-g(x)$
So, $A(x)=\pi\left(20^{2}-(20-g(x))^{2}\right)$
Volume of the solid $=\pi \int_{2}^{5} A(x) d x$

