2024 AB \#5

(no calculator)
(a)

Tangent line: $y-y_{1}=m\left(x-x_{1}\right)$ or $y=y_{1}+\frac{d y}{d x}\left(x-x_{1}\right)$
$\left.\frac{d y}{d x}\right|_{(2,4)}=\frac{-2(2)}{3+4(4)}=-\frac{4}{19}$
Using the tangent line above at $(2,4)$: When $x=3, y \approx 4-\frac{4}{19}(3-2)$ or $3 \frac{15}{19}$
(b)
$\frac{d y}{d x}=0$ only if $x=0$ and $y \neq-\frac{4}{3}$.
If $x=0$, then, because $y=1: 0^{2}+3(1)+2(1)^{2}=5 \neq 48$
Therefore, NO, $y=1$ cannot be tangent to the curve.

OR, ALTERNATIVELY:

If the horizontal line $y=1$ is tangent to the curve, then $\frac{d y}{d x}=0$ at $y=1$.
So, $x^{2}+3(1)+2(1)^{2}=48 \Rightarrow x^{2}=43 \Rightarrow x= \pm \sqrt{43}$
$\left.\frac{d y}{d x}\right|_{(\pm \sqrt{43}, 1)} \neq 0$. So, NO, $y=1$ cannot be tangent to the curve.
(c)

At $(\sqrt{48}, 0), \frac{d y}{d x}=\frac{-2 \sqrt{48}}{3+4(0)}=\frac{-2 \sqrt{48}}{3}$ which is a Real number.
Therefore, the tangent line is not vertical at $(\sqrt{48}, 0)$ since the slope is not undefined there.
(d)

For $y^{3}+2 x y=24$, at $(4,2) \frac{d y}{d t}=-2$. We need $\frac{d x}{d t}$.
$3 y^{2} \frac{d y}{d t}+2 x \frac{d y}{d t}+y(2) \frac{d x}{d t}=0$
$\operatorname{At}(4,2): 3(2)^{2}(-2)+2(4)(-2)+2(2) \frac{d x}{d t}=0 \Rightarrow \frac{d x}{d t}=10$

