2024 AB #5 (no calculator)

(a) Tangent line: $y - y_1 = m(x - x_1)$ or $y = y_1 + \frac{dy}{dx}(x - x_1)$ $\frac{dy}{dx} = \frac{-2(2)}{3+4(4)} = -\frac{4}{19}$ Using the tangent line above at (2,4): When x = 3, $\left| y \approx 4 - \frac{4}{19} (3-2) \right|$ or $3\frac{15}{19}$ (b) $\frac{dy}{dx} = 0$ only if x = 0 and $y \neq -\frac{4}{3}$. If x = 0, then, because y = 1: $0^2 + 3(1) + 2(1)^2 = 5 \neq 48$ Therefore, \boxed{NO} , y = 1 cannot be tangent to the curve. **OR, ALTERNATIVELY:** If the horizontal line y = 1 is tangent to the curve, then $\frac{dy}{dx} = 0$ at y = 1. So, $x^2 + 3(1) + 2(1)^2 = 48 \implies x^2 = 43 \implies x = \pm \sqrt{43}$ $\frac{dy}{dx}\Big|_{(\pm\sqrt{43},1)} \neq 0$. So, NO, y = 1 cannot be tangent to the curve. (c)At $(\sqrt{48}, 0)$, $\frac{dy}{dx} = \frac{-2\sqrt{48}}{3+4(0)} = \frac{-2\sqrt{48}}{3}$ which is a Real number. Therefore, the tangent line is not vertical at $(\sqrt{48}, 0)$ since the slope is not undefined there. (d) For $y^3 + 2xy = 24$, at $(4,2) \frac{dy}{dt} = -2$. We need $\frac{dx}{dt}$. $3y^2 \frac{dy}{dt} + 2x \frac{dy}{dt} + y(2) \frac{dx}{dt} = 0$ At (4,2): $3(2)^2(-2) + 2(4)(-2) + 2(2)\frac{dx}{dt} = 0 \implies \frac{dx}{dt} = 10$