2024 AB \#2
(calculator-active)
(a)

Using the calculator by graphing $v(t)$ on $0<t<2$ to solve $v\left(t_{R}\right)=0, t_{R}=1.4256097$
or 1.425 or 1.426
For $0<t<t_{R}$, the particle is moving to the right because $v(t)>0$ on this interval.
(b)
$a(1.5)=v^{\prime}(1.5)=-.9999999$ or -1
$v(1.5)=-0.076856<0 \quad$ (note: only the sign of $v(1.5)$ is needed)
The speed of particle is increasing at $t=1.5$ because the signs of $a(1.5)$ and $v(1.5)$ are the same.
Note: An an alternate method: Since speed of the particle is $|v(t)|$, then the speed at $t=1.5$ is increasing because $\frac{d}{d t}|v(t)|$ at $t=1.5>0$.
(c)
$x(4)=x(1)+\int_{1}^{4} v(t) d t=-3+\int_{1}^{4} v(t) d t=-2.8028$ or -2.802 or -2.803
(d)

The total distance traveled on $1 \leq t \leq 4$ is $\int_{1}^{4}|v(t)| d t=0.958145$ or 0.958

