2023 AB/BC \#4
 (no calculator)

(a)
$f^{\prime}(6)=0$, but $f^{\prime}(x)>0$ on $(2,6)$ and $f^{\prime}(x)>0$ on $(6,8)$.
So $f^{\prime}(x)$ does not change signs at $x=6$.
Hence, f has neither a relative minimum nor a relative maximum at $x=6$.
(b)
f is concave down when f^{\prime} is decreasing and this occurs on the intervals $(-2,0)$ and $(4,6)$.
(c)

$$
\lim _{x \rightarrow 2} \frac{6 f(x)-3 x}{x^{2}-5 x+6} \rightarrow \lim _{x \rightarrow 2}(6 f(x)-3 x)=6 f(2)-3(2)=6(1)-6=0
$$

$$
\text { Note: } f(x) \text { is differentiable so it is continuous at } \mathrm{x}=2 \text {. So } \lim _{x \rightarrow 2} f(x)=f(2)=1
$$

$$
\lim _{x \rightarrow 2}\left(x^{2}-5 x+6\right)=4-10+6=0
$$

This makes the limit above the indeterminate form $\frac{0}{0}$ so, applying L'Hospitals Rule:

$$
\lim _{x \rightarrow 2} \frac{6 f(x)-3 x}{x^{2}-5 x+6}=\lim _{x \rightarrow 2} \frac{6 f^{\prime}(x)-3}{2 x-5}=\frac{6 f^{\prime}(2)-3}{2(2)-5}=\frac{6(0)-3}{2(2)-5} \text { or } 3
$$

(d)

The candidates for the absolute minimum value of f on $[-2,8]$ are the endpoints of the interval, $x=-2$ and $x=8$ or where $f^{\prime}(x)=0$ and this occurs when $x=-1, x=2$, and $x=6$.
$f(-2)=f(2)-\int_{-2}^{2} f^{\prime}(x) d x=1-\left[\frac{1}{2}(1)(2)-\frac{1}{2}(1)(2)-\frac{1}{2}(2)(2)\right]=3$
$f(-1)=f(2)-\int_{-1}^{2} f^{\prime}(x) d x=1-\left[-\frac{1}{2}(3)(2)\right]=1+3=4$
$f(2)=1$
$f(6)$ is neither a maximum or minimum from part (a) and not an endpoint. (But it equals $7-\pi$)
$f(8)=f(2)+\int_{2}^{8} f^{\prime}(x) d x=1+\frac{1}{2}(2)(2)+4(2)-\frac{1}{2} \pi(2)^{2}=11-2 \pi$
So the absolute minimum value of f is 1 and it occurs at $x=2$.

