2023 AB/BC \#3
 (no calculator)

(a)

(b)
$M^{\prime}(t)=\frac{d M}{d t}=\frac{1}{4}(40-M), M(0)=5$
tangent line at $t=0: M-5=M^{\prime}(0)(t-0) \rightarrow M=5+M^{\prime}(0) t$
$M^{\prime}(0)=\frac{1}{4}(40-5)=\frac{35}{4} . \quad$ So tangent line at $t=0: M=5+\frac{35}{4} t$
Using this tangent line: $M(2) \approx 5+\frac{35}{4}(2)^{\circ} \mathrm{C}$ or $\frac{45}{2}{ }^{\circ} \mathrm{C}$
(c)
$\frac{d^{2} M}{d t^{2}}=\frac{1}{4}\left(0-\frac{d M}{d t}\right)=-\frac{1}{4}\left(\frac{d M}{d t}\right)=-\frac{1}{4}\left(\frac{1}{4}(40-M)\right)=-\frac{1}{16}(40-M)$
$\frac{d^{2} M}{d t^{2}}=-\frac{1}{16}(40-M)<0$ for all t since $M<40$ for all t.
Hence M is concave down for $(0,2]$ so the approximation for $M(2)$ in part (b) is an overestimate for the actual value of $M(2)$.
(d)

$$
\begin{aligned}
& \frac{d M}{d t}=\frac{1}{4}(40-M) \\
& \frac{d M}{40-M}=\frac{1}{4} d t \\
& \int \frac{d M}{40-M}=\int \frac{1}{4} d t \\
& -\ln |40-M|=\frac{1}{4} t+C \quad \rightarrow \quad M(0)=5, \text { so }-\ln |40-5|=\frac{1}{4}(0)+C \rightarrow C=-\ln 35
\end{aligned}
$$ and with the given condition that $M=5,45-M>0$, so $|40-M|=40-M$.

$-\ln (40-M)=\frac{1}{4} t-\ln 35$
$\ln (40-M)=-\frac{1}{4} t+\ln 35$
$40-M=e^{-\frac{1}{4}+\ln 35} \quad \rightarrow \quad M=40-e^{-\frac{1}{4}+\ln 35} \quad$ or an equivalent expression

