2023 AB/BC \#1 (calculator-active)

(a)
$\int_{60}^{135} f(t) d t$ is the number of gallons of gasoline pumped into the gas tank from $t=60$ seconds until $t=135$ seconds from when the pumping began.
Using a right Riemann sum,

$$
\begin{aligned}
\int_{60}^{135} f(t) d t & \approx(90-60) f(90)+(120-90) f(120)+(135-120) f(135) \\
& =(90-60)(0.15)+(120-90)(0.1)+(135-120)(0.05) \text { gallons }=8.25 \text { gallons }
\end{aligned}
$$

(b)

Since f is differentiable on the given interval, then it is continuous on that interval.
Hence f is differentiable and continuous on the interval $[60,120]$.
So by the Mean Value Theorem there must exist a time $t=c$, for $60<c<120$, such that

$$
f^{\prime}(c)=\frac{f(120)-f(60)}{120-60}=\frac{0.1-0.1}{60}=0 .
$$

(c)

The average rate of flow on $[0,150]=\frac{1}{150-0} \int_{0}^{150} g(t) d t=0.0959966962 \frac{\mathrm{gal}}{\mathrm{sec}}$ or 0.095 or 0.096
(d)
$g^{\prime}(140)=-0.004908888$ or -0.004 or -0.005
The rate of flow of the gasoline into the tank is decreasing at $0.00490888 \frac{\mathrm{gal} / \mathrm{sec}}{\mathrm{sec}}$ 140 seconds after pumping began.

