2023 AB \#6
(no calculator)
(a)
$6 x y=2+y^{3}$
$6 x \frac{d y}{d x}+y \cdot 6=3 y^{2} \frac{d y}{d x} \rightarrow\left(6 x-3 y^{2}\right) \frac{d y}{d x}=-6 y$
$\frac{d y}{d x}=\frac{-6 y}{6 x-3 y^{2}}=\frac{-6 y}{6 x-3 y^{2}}\left(\frac{\frac{-1}{3}}{\frac{-1}{3}}\right)=\frac{2 y}{y^{2}-2 x}$
(b)

The tangent line is horizontal if it's slope at the point of tangency, (x, y), is zero $\left.\rightarrow \frac{d y}{d x}\right|_{(x, y)}=0$ and (x, y) exits. Now, $\frac{d y}{d x}=0$ when $2 y=0 \rightarrow y=0$
Finding x when $y=0$ using $6 x y=2+y^{3} \rightarrow 6 x(0)=0$ and $2+(0)^{3}=2 \rightarrow$ But $0 \neq 2$
So no point (x, y) exists when $y=0$ and $\left.\frac{d y}{d x}\right|_{(x, y)}=0$ and no horizontal tangent line exists.
(c)

The tangent line is vertical when the slope of the tangent line is undefined at the point of tangency, $(x, y) \rightarrow$ $\left.\frac{d y}{d x}\right|_{(x, y)}$ is undefined and (x, y) exists.
$\frac{d y}{d x}$ is undefined when $y^{2}-2 x=0 \rightarrow 2 x=y^{2} \rightarrow x=\frac{y^{2}}{2}$
Finding y when $x=\frac{y^{2}}{2}$ using $6 x y=2+y^{3}$:
$6\left(\frac{y^{2}}{2}\right) y=2+y^{3} \rightarrow 3 y^{3}=2+y^{3} \rightarrow y^{3}=1 \rightarrow y=1$
and since $x=\frac{y^{2}}{2} \rightarrow x=\frac{1}{2}$
So since $6\left(\frac{1}{2}\right)(1)=2+(1)^{3}$ the tangent line is vertical at $\left(\frac{1}{2}, 1\right)$ because the slope of
the tangent line is undefined there and the point exists.
(d)

At the point $\left(\frac{1}{2},-2\right), \frac{d x}{d t}=\frac{2}{3}$. We must find $\frac{d y}{d t}$ there. Since $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}} \rightarrow \frac{d y}{d t}=\frac{d y}{d x} \cdot \frac{d x}{d t}$
$\left.\frac{d y}{d x}\right|_{(1 / 2,-2)}=\frac{2(-2)}{(-2)^{2}-2\left(\frac{1}{2}\right)}=\frac{-4}{4-1}=-\frac{4}{3} \quad$ So $\frac{d y}{d t}=\frac{d y}{d x} \cdot \frac{d x}{d t}=-\frac{4}{3} \cdot \frac{2}{3} \quad$ or $-\frac{8}{9}$

