2023 AB #6 (no calculator)

(a)

$$\begin{aligned} & 6xy = 2 + y^{3} \\ & 6x = \frac{dy}{dx} + y \cdot 6 = 3y^{2} \frac{dy}{dx} \rightarrow (6x - 3y^{2}) \frac{dy}{dx} = -6y \\ & \frac{dy}{dx} = \frac{-6y}{6x - 3y^{2}} = \frac{-6y}{6x - 3y^{2}} \left(\frac{\frac{-1}{3}}{\frac{1}{3}}\right) = \frac{2y}{y^{2} - 2x} \end{aligned}$$
(b)
The tangent line is horizontal if it's slope at the point of tangency, (x, y) , is zero $\rightarrow \frac{dy}{dx}\Big|_{(x,y)} = 0$
and (x, y) exits. Now, $\frac{dy}{dx} = 0$ when $2y = 0 \rightarrow y = 0$
Finding x when $y = 0$ using $6xy = 2 + y^{3} \rightarrow 6x(0) = 0$ and $2 + (0)^{3} = 2 \rightarrow \text{But } 0 \neq 2$
So no point (x, y) exists when $y = 0$ and $\frac{dy}{dx}\Big|_{(x,y)} = 0$ and no horizontal tangent line exists.
(c)
The tangent line is vertical when the slope of the tangent line is undefined at the point of tangency, $(x, y) \rightarrow \frac{dy}{dx}\Big|_{(x,y)}$
is undefined and (x, y) exists.
 $\frac{dy}{dx}$ is undefined and (x, y) exists.
 $\frac{dy}{dx}$ is undefined when $y^{2} - 2x = 0 \rightarrow 2x = y^{2} \rightarrow x = \frac{y^{2}}{2}$
Finding y when $x = \frac{y^{2}}{2}$ using $6xy = 2 + y^{3}$:
 $6\left(\frac{y^{2}}{2}\right)y = 2 + y^{3} \rightarrow 3y^{3} = 2 + y^{3} \rightarrow y^{3} = 1 \rightarrow y = 1$
and since $x = \frac{y^{2}}{2} \rightarrow x = \frac{1}{2}$
So since $6\left(\frac{1}{2}\right)(1) = 2 + (1)^{3}$ the tangent line is vertical at $\left[\frac{1}{2}, 1\right]$ because the slope of
the tangent line is undefined there and the point exists.
(d)
At the point $\left(\frac{1}{2}, -2\right)$, $\frac{dx}{dt} = \frac{2}{3}$. We must find $\frac{dy}{dt}$ there. Since $\frac{dy}{dx} = \frac{dy}{dt} \rightarrow \frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$
 $\frac{dy}{dt}\Big|_{(u^{2}, 2)} = \frac{2(-2)}{(-2)^{2} - 2\left(\frac{1}{2}\right)} = \frac{-4}{-1} = -\frac{4}{3}$ So $\frac{dy}{dt} = \frac{dy}{dt} \cdot \frac{dx}{dt} = \left[-\frac{4}{3}, \frac{2}{3}\right]$ or $-\frac{8}{9}$