2023 AB \#2

(calculator-active)
(a)

Stephen changes direction when $v(t)=0$ and $v(t)$ changes signs.
When $0<t<90, v(t)=0$ when $t=56$ and $v(t)$ changes from positive to negative there.
Hence, Stephen changes direction when $t=56$.
(b)

$$
\begin{aligned}
& a(60)=v^{\prime}(60)=-0.0360162389 \frac{\mathrm{~m} / \mathrm{sec}}{\mathrm{sec}} \text { or }-0.036 \frac{\mathrm{~m} / \mathrm{sec}}{\mathrm{sec}} \\
& v(60)=-0.1595124013
\end{aligned}
$$

Stephen is speeding up at $t=60$ because his velocity and acceleration are both negative then.
(c)

The displacement or distance between the position at $t=20$ and $t=80$ is

$$
\int_{20}^{80} v(t) d t=23.38399745 m \text { or } 23.383 \text { or } 23.384
$$

(d)

The total distance traveled from $t=0$ to $t=90$ is

$$
\int_{0}^{90}|v(t)| d t=62.16421624 m \text { or } 62.164
$$

