2018 AB #2 (calculator-active)

(a)
$a(3) = v'(3) \approx \boxed{-2.118193256}$ or -2.118
(b)
$x(3) = x(0) + \int_0^3 x'(t) dt = -5 + \int_0^3 v(t) dt = -1.760213187$ or -1.760
(c)
$\int_{0}^{3.5} v(t) dt \approx \boxed{2.843944475} \text{ or } 2.844 \implies \text{The displacement of the particle between } t = 0 \text{ and } t = 3.5 \text{ or}$
at $t = 3.5$ the particle is about 2.844 units to the right from where
it started at $t = 0$
$\int_{0}^{3.5} v(t) dt \approx \boxed{3.737085311} \text{ or } 3.737 \implies \text{The total distance traveled by the particle between}$
t = 0 and $t = 3.5$
(d)
$v_2(t) = x_2'(t) = 2t - 1$
The two velocities will be the same when $v(t) = v_2(t)$
or when $v(t) = 2t - 1$. Solving on the calculator: $t \approx 1.57054$ or 1.571